Научный журнал
Научное обозрение. Экономические науки
ISSN 2500-3410
ПИ №ФС77-57503

НОВЫЙ ПОДХОД К ФОРМИРОВАНИЮ РЕЙТИНГА ИНВЕСТИЦИОННОЙ ПРИВЛЕКАТЕЛЬНОСТИ РЕГИОНОВ

Зубова Ю.А. 1 Круглов С.В. 1
1 ФГКВОУВО «Саратовский военный ордена Жукова Краснознаменный институт войск национальной гвардии Российской Федерации»
Проанализированы публикуемые в открытом доступе рейтинги инвестиционной привлекательности регионов. Исследованы методические подходы к формированию этих рейтингов, выявлены их недостатки. Предложен новый подход к формированию рейтинга региональной инвестиционной привлекательности. Отличительной особенностью данного подхода является критерий ранжирования регионов по их инвестиционной привлекательности. В качестве такого критерия предлагается использовать показатели, характеризующие величину инвестиций в основной капитал, фактически осуществленных на территории региона. Преимущество данного критерия состоит в том, что он отражает мнение состоявшихся инвесторов, «проголосовавших» за тот или иной регион своими деньгами, а не мнение экспертов, отвечающих за результаты своей работы в лучшем случае своей репутацией. В качестве методического инструментария практической реализации предложенного подхода рекомендовано использовать кластерный анализ. Произведена практическая апробация предложенного подхода. Исходными данными для апробации послужила величина внебюджетных инвестиций в основной капитал на душу населения за 2017 год (по субъектам Российской Федерации). В результате апробации предложенного подхода был получен рейтинг, в котором было выделено девять кластеров. Преимуществами данного рейтинга по сравнению с другими, публикуемыми в настоящее время, являются возможность определять номер позиции каждого конкретного региона относительно остальных регионов Российской Федерации, а также относительно регионов одного с ним кластера; отслеживать количественные изменения в инвестиционной привлекательности регионов с течением времени; количественно оценивать степень дифференциации российских регионов по уровню их инвестиционной привлекательности.
инвестиционная привлекательность
регион
рейтинг
инвестиции в основной капитал
кластерный анализ
1. Рейтинг инвестиционной привлекательности регионов России по итогам 2018 года / Национальное рейтинговое агентство. [Электронный ресурс]. URL: http://www.ra-national.ru/sites/default/files/analitic_article/IPR-6-06112018.pdf (дата обращения: 10.02.2020).
2. Инвестиционная привлекательность регионов – 2017 / РАЭКС-Аналитика. [Электронный ресурс]. URL: https://raex-a.ru/ratings/regions/2017 (дата обращения: 10.02.2020).
3. Антилогова А.А. Оценка инвестиционной привлекательности региона // Вестник современных исследований. 2017. № 1–2 (4). С. 10–19.
4. Емельянов Ю.С., Леонова Ю.Ю. О показателях оценки инвестиционной привлекательности регионов России // Управленческие науки в современном мире. 2016. Т. 2. № 2. С. 501–506.
5. Озерова К.А., Ивашина Н.С. Оценка инвестиционной привлекательности регионов на основе синтетического интегрального индикатора // Корпоративная экономика. 2017. № 3 (11). С. 30–40.
6. Уталиева Р.С., Адиетова Э.М. Факторы, формирующие инвестиционную привлекательность региона // Национальная Ассоциация Ученых. 2015. № 6–1 (11). С. 156–159.
7. Юва Д.С. Экономическая оценка инвестиционной привлекательности регионов // Интерэкспо Гео-Сибирь. 2017. Т. 2. № 1. С. 210–214.
A NEW APPROACH TO FORMING A RATING OF INVESTMENT ATTRACTIVENESS OF REGIONS

Zubova Yu.A. 1 Kruglov S.V. 1
1 Saratov Military Institute for the Internal Troops of Ministry of the Interior of Russian Federation

Abstract:
The ratings of investment attractiveness of regions published in the open access are analyzed. Methodological approaches to the formation of these ratings have been studied, and their shortcomings have been identified. A new approach to forming a rating of regional investment attractiveness is proposed. A distinctive feature of this approach is the criterion for ranking regions by their investment attractiveness. As such, it is proposed to use indicators that characterize the amount of investments in fixed capital actually made in the region. The advantage of this criterion is that it reflects the opinion of established investors who «voted» for a particular region with their money, and not the opinion of experts who are responsible for the results of their work, at best, by their reputation. It is recommended to use cluster analysis as a methodological tool for practical implementation of the proposed approach. The proposed approach was tested in practice. The initial data for testing was the amount of extra-budgetary investments in fixed assets per capita for 2017 (for the subjects of the Russian Federation). As a result of testing the proposed approach, a rating was obtained, in which nine clusters were allocated. The advantages of this rating compared to other currently published ones are the ability to determine the position number of each specific region relative to other regions of the Russian Federation, as well as relative to the regions of the same cluster; to track quantitative changes in the investment attractiveness of regions over time; to quantify the degree of differentiation of Russian regions by their level of investment attractiveness.

Keywords:
investment attractiveness
region
rating
fixed capital investment
cluster analysis

Объективная, достоверная и точная оценка инвестиционной привлекательности региона приобретает в современных условиях все большую значимость.

Во-первых, она служит ориентиром для инвесторов, помогая им принимать взвешенные и обоснованные решения. Зная показатели инвестиционной привлекательности региона, инвестор может оценить его сильные и слабые стороны, взвесить риски, связанные с реализацией инвестиционных проектов на его территории.

Во-вторых, оценку инвестиционной привлекательности региона можно считать одним из показателей эффективности деятельности органов исполнительной власти субъектов Российской Федерации. В качестве такого показателя она может быть интересна и рядовым жителям, и высшим должностным лицам региона. Первым – для принятия электоральных решений, вторым – для разработки и корректировки своей инвестиционной, промышленной, финансовой, социальной, институциональной политики.

На сегодняшний день в нашей стране на регулярной основе составляется несколько рейтингов инвестиционной привлекательности регионов. Так, Агентство стратегических инициатив ежегодно разрабатывает Национальный рейтинг состояния инвестиционного климата в субъектах РФ; Национальное рейтинговое агентство – Рейтинг инвестиционной привлекательности регионов России; рейтинговое агентство «РАЭКС-Аналитика» – обзор «Инвестиционная привлекательность регионов». Своего рода рейтингом инвестиционной привлекательности регионов можно считать и Рейтинг социально-экономического положения субъектов Российской Федерации, подготавливаемый рейтинговым агентством «РИА Рейтинг».

Несмотря на то что работа по ранжированию регионов в соответствии с их инвестиционной привлекательностью ведется в нашей стране достаточно давно, несмотря на то что в этой области накоплен достаточно большой опыт, отдельные аспекты методики составления региональных инвестиционных рейтингов нуждаются в совершенствовании.

Рассмотрим, к примеру, обзор рейтингового агентства «РАЭКС-Аналитика» за 2017 год. В этом обзоре Челябинская область отнесена к группе регионов, имеющих средний потенциал – умеренный риск (2B), тогда как Саратовская область отнесена к менее привлекательной с инвестиционной точки зрения группе регионов, имеющих пониженный потенциал – умеренный риск (3B1). Между тем доля инвестиций в основной капитал в ВРП Саратовской области (21,7 %) существенно превысила аналогичный показатель Челябинской области (14,8 %), то же самое можно сказать и об инвестициях в основной капитал на душу населения: в Саратовской области их величина составила 58 744 руб., а в Челябинской – 56 892 руб. Таким образом, регион с более низким рейтингом оказался более привлекательным для инвесторов, чем регион с более высоким рейтингом.

Аналогичный парадокс наблюдается и при сравнении Саратовской и Новгородской областей. Последняя отнесена к группе регионов с более низким, чем у Саратовской области рейтингом инвестиционной привлекательности, а именно, к группе регионов, имеющих незначительный потенциал – умеренный риск (3B2). Несмотря на это, доля инвестиций в основной капитал в ВРП Новгородской области (26,3 %) и величина инвестиций в основной капитал на душу населения (116 213 руб.) превысили аналогичные показатели Саратовской области.

Причина подобных парадоксов кроется в применяемой в настоящее время методике составления рейтингов инвестиционной привлекательности. Согласно этой методике позиция региона в рейтинге есть функция факторов инвестиционной деятельности, «каждый из которых может быть оценен с помощью подбора для него специального набора показателей» [1]. При этом вклад каждого из этих показателей в итоговый индикатор «оценивается на основе анкетирования представителей экспертного, инвестиционного и банковского сообществ» [2]. То есть позиция региона в рейтинге инвестиционной привлекательности определяется в конечном счете экспертами (представители инвестиционного сообщества тоже выступают в данном случае в качестве экспертов).

Цель исследования: разработка нового подхода к составлению рейтингов инвестиционной привлекательности регионов.

Материалы и методы исследования

Ранжирование регионов в рамках этого подхода предлагается осуществлять по величине уже состоявшихся инвестиций в основной капитал, что и отличает предлагаемый подход от общепринятой методики формирования инвестиционных региональных рейтингов, разрабатываемой в трудах А.А. Антилоговой [3], Ю.С. Емельянова и Ю.Ю. Леоновой [4], К.А. Озеровой и Н.С. Ивашиной [5], Р.С. Уталиевой и Э.М. Адиетовой [6], Д.С. Юва [7] и других авторов.

Преимущество предлагаемого подхода состоит в том, что сформированный на его основе рейтинг будет отражать мнение состоявшихся инвесторов, «проголосовавших» за тот или иной регион своими инвестиционными вложениями, своими деньгами, а не мнение экспертов, отвечающих за результаты своей работы в лучшем случае репутацией, а то и вовсе анонимных.

Результаты исследования и их обсуждение

В рамках апробации предлагаемого подхода нами был составлен рейтинг инвестиционной привлекательности регионов за 2017 год с применением кластерного анализа. Этот метод позволяет разделить совокупность каких-либо объектов (например, регионов) на кластеры (например, на кластеры высокой, средней и низкой инвестиционной привлекательности).

При этом кластеризируемые объекты представляются как точки в пространстве признаков. Задача кластерного анализа – выделить сгущения этих точек, разбить их совокупность на подмножества. При этом внутри каждого подмножества должны оказаться регионы, незначительно различающиеся между собой по признакам кластеризации, но существенно отличающиеся по этим признакам от регионов другого подмножества. Мерой сходства (различия) между регионами является геометрическое расстояние между точками, соответствующими величине выбранных признаков кластеризации.

Очевидно, что для цели настоящего исследования в качестве признака кластеризации необходимо подобрать показатель, характеризующий величину инвестиций в основной капитал, произведенных на территории региона, пригодный при этом для межрегиональных сравнений. В качестве такого показателя нами была взята величина инвестиций в основной капитал на душу населения, уменьшенная на величину бюджетных инвестиций. Последние были исключены из расчета потому, что их осуществление не является подтверждением инвестиционной привлекательности объекта вложений. В самом деле, государство редко производит инвестиции в высокопривлекательные проекты, напротив, оно финансирует не интересные частному бизнесу направления. Цель государства как инвестора не в том, чтобы получить доход от инвестиционных вложений, а в том, чтобы восполнить дефицит частных инвестиций в неприбыльные, но стратегически важные объекты, например в объекты транспортной, энергетической или социальной инфраструктуры. Именно поэтому в качестве исходных данных в работе были взяты инвестиционные вложения, произведенные из внебюджетных источников.

Обработка указанных данных осуществлялась в статистическом пакете SPSS Statistics в два этапа.

На первом этапе было определено оптимальное количество кластеров. Программа SPSS позволяет сделать это по двум критериям: либо по Байесовскому информационному критерию, либо по информационному критерию Акаике. Кроме того, для определения оптимального количества кластеров можно использовать две меры расстояния между объектами: Евклидову меру и меру Log-правдоподобия. Таким образом, путем комбинирования двух критериев кластеризации и двух мер расстояния можно получить четыре способа определения оптимального количества кластеров. Применение всех четырех способов дало одинаковый результат: оптимальное количество кластеров для разбиения исследуемой совокупности равно двум. При этом во всех четырех случаях качество разбиения было оценено как хорошее.

На втором этапе кластерного анализа было произведено непосредственное разбиение на 2 кластера 82 регионов Российской Федерации (Ненецкий автономный округ был учтен в составе Архангельской области, а Ханты-Мансийский и Ямало-Ненецкий автономные округа – в составе Тюменской области). В качестве метода разбиения был использован метод Варда.

В результате был выделен кластер с экстремально высокой инвестиционной привлекательностью, в который вошло 4 региона (Республика Саха (Якутия), Тюменская, Магаданская и Сахалинская области), и кластер, в который вошли остальные регионы.

Полученные кластеры существенно отличались друг от друга по показателю кластеризации. Так, среднее значение величины внебюджетных инвестиций в основной капитал на душу населения в первом кластере составило 411,9 тыс. руб., тогда как во втором – 48,6 тыс. руб. Однако мера сходства между регионами внутри кластеров оказалась низкой, так как ни один из полученных кластеров не был однородным (коэффициент вариации показателя кластеризации превышал 33 %). Поэтому процедуру кластеризации было решено повторить для каждого из двух выделенных кластеров. Новые кластеры, полученные в результате повторной кластеризации, проверялись на однородность и снова подвергались кластеризации в случае, если условие однородности не выполнялось (если коэффициент вариации внебюджетных инвестиций в основной капитал на душу населения превышал 33 %). В результате было получено 9 кластеров (таблица).

Инвестиционная привлекательность регионов Российской Федерации в 2017 г.

Рейтинг

Кластер / Регион

Внебюджетные инвестиции в основной капитал на душу населения, тыс. руб.

(по субъектам Российской Федерации)

Внебюджетные инвестиции в основной капитал на душу населения, тыс. руб.

(по кластерам)

среднее значение, тыс. руб.

коэффициент вариации, %

Кластер 1. Регионы с экстремально высокой инвестиционной привлекательностью

1

Тюменская область

586,1

586,1

Кластер 2. Регионы с инвестиционной привлекательностью, близкой к экстремально высокой

2

Сахалинская область

474,5

353,9

32,1

3

Республика Саха (Якутия)

338,0

4

Магаданская область

249,2

Кластер 3. Регионы с высокой инвестиционной привлекательностью

5

Архангельская область

169,3

148,9

12,0

6

Амурская область

162,8

7

Чукотский автономный округ

162,2

8

Ленинградская область

145,7

9

Алтайский край

143,0

10

Республика Коми

142,9

11

Астраханская область

116,3

Кластер 4. Регионы с повышенной инвестиционной привлекательностью

12

Мурманская область

97,3

59,7

23,8

13

Вологодская область

87,5

14

г. Москва

83,6

15

Забайкальский край

77,8

16

Республика Татарстан

76,9

17

Республика Хакасия

72,6

18

г. Санкт-Петербург

70,3

19

Пермский край

66,4

20

Калининградская область

65,7

21

Липецкая область

65,2

22

Хабаровский край

64,3

23

Красноярский край

62,9

24

Воронежская область

60,4

25

Курская область

59,2

26

Камчатский край

59,1

27

Новгородская область

56,9

28

Тульская область

56,8

29

Московская область

55,7

30

Иркутская область

54,1

31

Самарская область

52,3

32

Оренбургская область

50,8

33

Краснодарский край

49,6

34

Калужская область

49,3

35

Тамбовская область

49,1

36

Свердловская область

47,5

37

Еврейская автономная область

45,3

38

Белгородская область

45,2

39

Республика Тыва

44,0

40

Волгоградская область

43,2

41

Республика Карелия

42,6

42

Ярославская область

40,6

Окончание таблицы

Рейтинг

Кластер / Регион

Внебюджетные инвестиции в основной капитал на душу населения, тыс. руб.

(по субъектам Российской Федерации)

Внебюджетные инвестиции в основной капитал на душу населения, тыс. руб.

(по кластерам)

среднее значение, тыс. руб.

коэффициент вариации, %

Кластер 5. Регионы со средней инвестиционной привлекательностью

43

Нижегородская область

37,1

31,9

12,2

44

Приморский край

36,7

45

Республика Башкортостан

36,2

46

Омская область

35,9

47

Рязанская область

35,7

48

Челябинская область

35,3

49

Тверская область

34,9

50

Республика Мордовия

33,8

51

Ростовская область

32,4

52

Саратовская область

31,8

53

Удмуртская Республика

30,0

54

Орловская область

28,9

55

Кемеровская область

28,8

56

Смоленская область

28,1

57

Кировская область

27,4

58

Владимирская область

27,3

59

Брянская область

26,6

60

Ульяновская область

26,6

Кластер 6. Регионы с пониженной инвестиционной привлекательностью

61

Пензенская область

23,9

19,2

12,8

62

Новосибирская область

22,4

63

Чеченская Республика

21,8

64

Чувашская Республика

20,1

65

Республика Бурятия

19,6

66

Ставропольский край

18,9

67

Томская область

17,9

68

Республика Калмыкия

17,8

69

Республика Марий Эл

17,8

70

Республика Алтай

17,4

71

Псковская область

16,3

72

Костромская область

16,2

Кластер 7. Регионы с низкой инвестиционной привлекательностью

73

Курганская область

14,2

11,3

17,6

74

Республика Северная Осетия-Алания

12,9

75

Республика Адыгея

12,7

76

Карачаево-Черкесская Республика

11,6

77

Кабардино-Балкарская Республика

11,0

78

Ивановская область

10,5

79

Республика Крым

10,0

80

г. Севастополь

7,8

Кластер 8. Регионы с инвестиционной привлекательностью, близкой к экстремально низкой

81

Республика Ингушетия

3,3

3,3

Кластер 9. Регионы с экстремально низкой инвестиционной привлекательностью

82

Республика Дагестан

1,9

1,9

Как видим, полученный рейтинг позволяет определить номер позиции каждого конкретного региона относительно остальных регионов Российской Федерации, а также относительно регионов одного с ним кластера. Этим данный рейтинг выгодно отличается от упомянутых выше рейтингов, например, от Рейтинга инвестиционной привлекательности регионов Национального рейтингового агентства. Последний позволяет судить только о принадлежности региона к тому или иному кластеру, например к кластеру регионов с высоким, средним или умеренным уровнем инвестиционной привлекательности.

Потенциально предлагаемый рейтинг даст возможность отслеживать количественные изменения в инвестиционной привлекательности регионов с течением времени. То есть он позволит судить не только о направлении изменения инвестиционной привлекательности региона от года к году (ее повышении или снижении), что позволяют делать и другие составляемые в настоящее время рейтинги. В отличие от них предлагаемый рейтинг позволит судить еще и о том, насколько в количественном выражении изменилась инвестиционная привлекательность региона.

Кроме того, предлагаемый рейтинг дает возможность оценить степень дифференциации российских регионов по уровню их инвестиционной привлекательности, причем оценить ее количественно, например путем расчета показателей, аналогичных тем, что применяются для оценки степени дифференциации населения по уровню доходов, например аналогичных децильному и квинтильному коэффициентам.

Заключение

Итак, в ходе апробации предлагаемого в настоящей работе подхода к ранжированию регионов по их инвестиционной привлекательности был сформирован рейтинг, состоящий из девяти кластеров. Данный рейтинг был получен без процедуры экспертной оценки, что обуславливает его большую объективность по сравнению с рейтингами, полученными с применением традиционной методики ранжирования регионов по степени их инвестиционной привлекательности.

Предполагается, что сформированный в настоящей работе рейтинг будет полезен инвесторам, осуществляющим выбор региона для инвестиционных вложений. Кроме того, данный рейтинг можно использовать для оценки эффективности деятельности органов исполнительной власти субъектов Российской Федерации: чем выше рейтинговая позиция кластера, в которую вошел тот или иной регион, чем больше удалось привлечь в этот регион инвестиций, тем результативнее проводимая в этом регионе инвестиционная, промышленная, финансовая, социальная, институциональная политика.


Библиографическая ссылка

Зубова Ю.А., Круглов С.В. НОВЫЙ ПОДХОД К ФОРМИРОВАНИЮ РЕЙТИНГА ИНВЕСТИЦИОННОЙ ПРИВЛЕКАТЕЛЬНОСТИ РЕГИОНОВ // Научное обозрение. Экономические науки. – 2020. – № 1. – С. 31-36;
URL: https://science-economy.ru/ru/article/view?id=1034 (дата обращения: 08.05.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074